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Abstract

A variety of models have been developed to investigate
“homeostatic adaptation,” a mechanism inspired by Ashby’s
homeostat, where a plastic control medium is reorganized un-
til one or more essential variables are maintained within pre-
defined limits. In these models, “habits” emerge, defined as
behavior-generating mechanisms that rely upon their own in-
fluence to maintain the conditions necessary for their own
persistence. In this paper, we present a recently developed
sensorimotor-habit-based controller that is coupled to a sim-
ulated two-wheeled robot with a simulated metabolism. The
simulation is used to demonstrate how habits can have the
same essential variable(s) as the metabolic or “biological” or-
ganism that is performing the behavior, and that in certain
conditions when this is the case, the emergent habits will tend
to stabilize essential variables within viability limits. The
model also demonstrates that an explicit pre-specification of
(A) which variables should induce plasticity and (B) which
values of those variables should induce plasticity is not al-
ways necessary for homeostatic adaptation of behavior.

Introduction
Over the past few decades, a range of “embodied” ap-
proaches to the study of the mind have emerged, in-
cluding: enaction (Stewart et al., 2010), dynamical ap-
proaches to cognition (Beer, 1997), the sensorimotor ap-
proach to perception (O’Regan and Noë, 2001), and em-
bodied AI/Robotics (Brooks, 1990; Pfeifer and Bongard,
2006). Unifying these approaches is the notion that instead
of investigating abstract computational problems such as
chess, research in robotics and AI should instead focus upon
embodied, embedded agents that use ongoing interactions
with their environment to accomplish “intelligent behavior,”
where intelligence is evaluated by its contribution to the sur-
vival of the agent, (see e. g. Steels, 1995). But, the notion
of system survival or “viability” in the context of robotics
can be more challenging than it first appears. Biological or-
ganisms are far-from-equilibrium, dissipative structures that
depend upon ongoing processes of self-production and self-
maintenance to counteract their tendency to degrade (Kauff-
man, 2000; Nicolis and Prigogine, 1977; Schrödinger, 1944;
Maturana and Varela, 1980), but conventional robots do not

share this property and thus there can be challenges in re-
lating the behavior of artifacts to the behavior of biologi-
cal organisms. This difficulty has led to different empha-
sis placed upon the metabolic organization within the em-
bodiment community, with some proponents more or less
ignoring the concept and others arguing that the metabolic
organization is fundamental (see Froese and Ziemke, 2009).
As an example of the former, metabolism is seen as largely
irrelevant to the sensorimotor approach to perception, with
suggestions that a missile guidance system could have some
minimal perceptions (O’Regan and Noë, 2001, p. 82) and
that a machine, if sufficiently complex, could be considered
aware (with no mention of self-production). In contrast,
many studies in embodied- and evolutionary-robotics ac-
knowledge the metabolic-organization and its role of defin-
ing viability limits as important and set out to investigate
how regulation can be accomplished that maintains viabil-
ity. Most embodied robotics studies do not model in detail
the processes through which the viability-limits are defined
(e. g. metabolism), as the focus is instead upon how a par-
ticular form of regulation can be accomplished (e. g. Avila-
Garcia and Cañamero, 2004; Beer, 1995), but some of our
recent models include both behavioral and the metabolic dy-
namics that define the viability limits, demonstrating how
organisms can respond to the processes that define their vi-
ability limits to perform an ongoing, in-the-moment evalu-
ation of the environment (Egbert et al., 2009), that allows
an organism to behave in a history-dependent and adaptive
way that integrates multiple environmental and internal fac-
tors into an adaptive behavior (Egbert et al., 2010b; Egbert,
2013) that may play an interesting role of facilitating adap-
tive evolution (Egbert et al., 2010a).

Some “enactivists” (Stewart et al., 2010) believe that the
metabolic-organization fundamentally underlies mind. In
particular, it has been argued that the metabolic-organization
underlies a modern concept of intrinsic teleology, in which
an organism’s survival grounds teleological (Weber and
Varela, 2002) and normative (Barandiaran and Egbert, 2013)
descriptions of its behavior. In this view, organisms act to
satisfy the needs that are the result of their own precarious,



metabolic organization (Weber and Varela, 2002). But of
course, not all behavior, adaptive or otherwise, is a direct
response to biological needs and dynamics; not all behavior
occurs to maintain biological essential variables within vi-
ability limits, and so what can biological embodiment con-
tribute, to “higher” forms of adaptive behavior, i. e. beyond
the metabolism-based chemotaxis of bacteria? One proposal
stems from the observation that aspects of perception, learn-
ing and sensorimotor behavior appear to have properties in
common with self-maintaining organisms. In particular, an
analogy is drawn between habits seen as self-maintaining
patterns of behavior, and biological organisms seen as self-
maintaining metabolic entities (Di Paolo, 2003; Barandi-
aran, 2007, 2008). By viewing habits as having the same
precarious, self-maintaining organization as biological enti-
ties, it becomes possible to understand how, in a way sim-
ilar to the grounding of many survival-based behaviors in
metabolism, other behaviors can be grounded in the needs
of the habits themselves. In metabolism-based chemotaxis,
bacteria act to maintain their biological essential variables
and analogously, habit-based behavior maintains the con-
ditions necessary for the persistence of the behavior itself.
Or, put another way, biological embodiment grounds sur-
vival, the “mother of all values” (Weber and Varela, 2002;
Di Paolo, 2003), and habits are autonomous “mental life
forms,” that ground the others (Di Paolo, 2003; Barandiaran,
2007, 2008).

In a set of minimalistic computational models, Di Paolo
(2000, 2003) demonstrated how a behavior-generating
mechanism can stabilize the conditions necessary for its own
persistence. The first model involved a simple simulated
two-wheel, two-light-sensor robot, controlled by a plastic
continuous time recurrent neural network. In a design in-
spired by Ashby’s homeostat (Ashby, 1952), the weights of
the connections in the neural network were fixed when the
neural firing-rate was within a predefined region, but out-
side of this region the weights changed according to deter-
ministic plasticity rules. A genetic algorithm succeeded at
identifying model parameters (initial weights, which plas-
ticity rules applied to which synapses, etc.), that resulted
in networks that both avoid plasticity and perform photo-
taxis. We can say that the neural network configurations
that emerged in this model were self-maintaining behavior-
generating mechanisms. Why? A configuration of weights
in the neural network is precarious in the sense that it can
only persist if plasticity is avoided; it has viability-limits in
that neuron firing rates must not leave predefined bounds if
the behavior-generating mechanism is to persist. The firing
rates of the neurons are influenced by internal neuron ac-
tivity, but also by the sensorimotor dynamics of the behav-
ior: the neurons influence the motors which influence how
the environment influences the sensors, which, coming full
circle, influence the neurons. The stability of a particular
configuration weights of the NN therefore depends, in part,

upon the behavior that it drives, and thus can be considered
to be a self-maintaining behavior-generating mechanism.

In this first model of Di Paolo’s, there is no modeled
metabolism, biological essential variables or biological via-
bility limits. The behavior is phototaxis because of selection
pressures applied during the artificial evolution. We could
imagine that the agent has a biological (i. e. metabolic) need
to move toward the light, but even so, the coupling of this
need and the self-maintaining behavioral mechanism was
accomplished through an evolutionary process. Is there a
way that the self-maintaining behavior-generating mecha-
nisms (henceforth “habits”) and the self-maintenance of the
organism could be more tightly integrated? In order to ad-
dress this, Di Paolo (2003) developed a second model con-
sisting of a simulated, Braitenberg-inspired robot, with plas-
tic mappings between sensors and motors. These mappings
undergo stochastic change when the battery (an analog to
metabolism) is outside of certain pre-defined limits. This
is a step forward in that the biological needs and the habits
are intertwined in a cycle of dependence, where the main-
tenance of a viable battery level depends upon the habit,
but also the stability of the habit depends upon the bat-
tery level remaining within bounds, for if the habit drives
the metabolism outside of the biological viability limits, the
behavior-generating mechanism will also lose viability due
to the stochastic weight-change process. In a different ap-
proach to coupling behavior to metabolic needs, Iizuka et al.
(2013) selected the limits for the induction of plasticity such
that when there was no sensor activity, the weights of the
network would change. In this way, the system could only
become stable when it was performing phototaxis. The re-
lationship between the essential variable (a “photosynthetic
metabolism” that justifies phototaxis as a target behavior)
and the behavior has been hard-wired by the designer, in
the sense that the robot can adapt to inversions of its visual
field, but could not adapt to its phototactic-needs becoming
photophobic-needs.

For all of the models presented above, the limits of plas-
ticity, i. e. the surface between the states where plasticity
does occur and where it does not, are parameters of the
model that are pre-specified. It is also the case that for ev-
ery model, one or more variables are given a special privi-
leged status as a “plasticity inducing variable”. In the first
model of Di Paolo’s presented above, and in Iizuka’s model,
these are the neuron firing rates. In the second model of
Di Paolo’s, it is the state of the “biological” essential vari-
able, i. e. the battery state, and it is through this explicit
specialization of this variable that the biological dynamics
and the mental dynamics are coupled. In this paper, we
use a newly developed model of habits, coupled to a simu-
lated two-wheeled robot with simulated metabolic dynam-
ics to demonstrate how it can be possible to couple self-
maintaining behavior-generating mechanisms with biolog-
ical essential variables without pre-specifying the region of



Figure 1: Essential variable dynamics in two worst case
scenarios, always feeding (blue) and never feeding (black).
Left: Glucose, insulin and glucagon dynamics. Viability
limits for the essential variables are indicated by dashed red
lines. Right: damage and accumulated damage.

plasticity and moreover, without pre-specifying which vari-
ables are plasticity-inducing variables.

In the next section we describe the robot, its simulated
metabolism and its habit-based controller. We then describe
two scenarios that we use to demonstrate that by includ-
ing the state of the metabolism as a sensory-variable, self-
reinforcing patterns of behavior emerge that stabilize that
metabolic dynamics. We present the results of simulations
of these scenarios before interpreting and discussing them.

Simulation
Robot and environment. We simulate an simple robotic
agent embedded in a two-dimensional square environment 8
units wide, with periodic boundary conditions. The robot
has two directional light sensors and two independently
driven motorized wheels. The motion of the robot is ẋ =
cos(α)(ml+mr); ẏ = sin(α)(ml+mr); α̇ = 2(mr−ml),
where x,y is the robots spatial position, α ∈ [−π, π] is the
robots orientation and ml ∈ [−1, 1] and mr ∈ [−1, 1] are
the robots left and right motor speeds. The robot’s light sen-
sors are located at x+r ·cos(α+β),y+r ·sin(α+β), where
r = 0.25 is the robot’s radius and β = ±π/3 is the angu-
lar offset of the sensors from α, the heading of the robot.
The activation of each sensor is determined by the equation
below, where b = [cos(α + β), sin(α + β)] is a unit vec-
tor indicating the direction that the sensor is facing, c is the
vector from the sensor to the light (which is located in the
center of the arena at (0, 0)), and D is the distance from the
sensor to the light.

s =
(b · ||c||)+

1 +D2
(1)

Metabolism. We simulate the robot as having a
metabolism with intrinsic dynamics that are indirectly in-
fluenced by the motor behavior. The simulated metabolism

param. value description
c 1.0 rate of glucose use / consumption

fU , fI 20, 0.1 efficiency of hormonal modulation
bU , bI 60.0, 120.0 threshold G-concentrations
cU , cI 0.25, 0.25 rate of hormonal production
dU , dI 1.0, 1.0 rate of hormone elimination

τ 5.0 delay in hormonal response

Table 1: Metabolism-related parameters

is inspired by the blood-sugar dynamics of a diabetic,
where hormonal regulation prevents the blood-sugar from
diverging, but is insufficient to prevent blood-glucose levels
from leaving healthy limits. The dynamics of diabetes has
been simulated since this work is part of the ALIZ-E project,
where we are investigating how to help diabetic children
learn to manage their disease. Part of this support involves
developing a better understanding of how behaviors relate
to essential variables such as blood-sugar, as well as to
reflexive hormonal modulators such as insulin and glucagon
(Lewis and Cañamero, 2014), and how diabetes-related
(good and bad) habits form and how they can be changed
(from bad to good) in support of self-efficacy.

The modeled metabolism is not intended to be a realis-
tic simulation of blood-sugar dynamics, but just to qualita-
tively capture the dynamics of an hormone regulated essen-
tial variable that is inadequately regulated, i. e. a variable
for which the hormonal regulation is insufficient to keep the
system within its viability limits. The model consists of
three coupled delayed differential equations, which repre-
sent: G, blood-glucose concentration, the essential variable
which must remain within limits if the system is to be con-
sidered in a healthy state; I , the concentration of insulin, a
hormone that removes G from the blood when it is above a
threshold, and U , the concentration of glucagon, a hormone
that releases G into the blood when it is below a threshold.
In these equations, the function [a < b] ≡ 1 when a < b,
and 0 otherwise.

dG

dt
= E + fUU − fIIG− c (2)

dI

dt
= [bI < Gt−τ ]cI − dII (3)

dU

dt
= [Gt−τ < bU ]cU − dUU (4)

We defined viability limits such that the system is con-
sidered to be healthy if G ∈ [bU , bI ]. Leaving the viability
limits will eventually trigger hormonal regulation of G back
into the viability region (with a delay of τ ), but the model
is configured such that similar to a diabetic, the hormonal
regulation is insufficient to maintain G within healthy lim-
its. When the robot is within 2 spatial units of the light it
is considered to be “feeding” and the variable E is set to
2, and otherwise E = 0. Thus, the behavior of the robot



influences G and, as we shall see, if certain patterns of be-
havior are performed, it is possible for the value of G to re-
main within the viability limits indefinitely. However, if the
robot performs non-ideal behaviors, G will leave the viabil-
ity limits, and thereby accumulate “damage,” defined as the
quantity of time when G /∈ [bU , bI ]. Figure 1 shows exam-
ple trajectories for G, I and U for two worst-case behaviors
(the robot always eating, and the robot never eating) with
the plots on the right indicating the damage and accumu-
lated damage suffered in these scenarios. Throughout this
paper, time and time-related values such as τ are specified
in arbitrary time-units, where one time-unit is the amount
of time that a robot traveling at full-speed moves 2 spatial
units.

Habit-based controller We have recently developed a
plastic, self-modifying dynamical system called an Iter-
ant Deformable Sensorimotor Medium (IDSM) (Egbert and
Barandiaran, 2014). This system was designed to act as a
robot controller that supports the formation of “habits” con-
ceived of as precarious, self-maintaining patterns of senso-
rimotor behavior. When coupled to a robot’s sensors and
motors, the IDSM (1) causes the robot to repeat behaviors
that it has performed in the past, and (2) allows for the re-
inforcement of patterns of behavior through repetition, such
that the more frequently and recently a pattern of behavior
has been performed, the more likely it is to be performed
again in the future. If a pattern of behavior is not performed
for a period of time, it becomes less likely to be re-enacted,
but when behaviors are performed, they become more likely
to be repeated in the future, and in this way, self-maintaining
patterns of behavior emerge. Metaphorically, the IDSM
works similarly to the paths made by animals through the
woods or through a field of grass. As sensorimotor trajecto-
ries are experienced, pathways are worn in to the IDSM’s
“sensorimotor-space,” such that future sensorimotor path-
ways are likely to be similar to those pathways that have
been taken in the past. In the remainder of this section, we
provide an overview of our IDSM architecture. Much of the
text here comes from (Egbert and Barandiaran, 2014), which
provides a much more detailed description of the IDSM and
its dynamics.

The IDSM operates by developing and maintaining a his-
tory of sensorimotor (SM) dynamics. This history takes
form of many nodes, where each node describes the SM-
velocity at a SM-state at some point in the past. As the
agent behaves, and its SM-state changes, nodes are added,
such that a record is constructed of how sensors and motors
have changed for various SM-states during the system’s his-
tory. These are used to determine future motor-actions such
that when a familiar SM-state is encountered, the IDSM pro-
duces behavior that is similar to the behavior that was per-
formed when the agent was in a similar situation in the past.

More formally, each node is a tuple of two vectors and

Symbol Description
x current SM-state

Np SM-state associated with node N (in normal-
ized SM-space coordinates)

Nv SM-velocity indicated by node N (in normal-
ized SM-space coordinates)

Nw weight of node N
d(x,y) distance function between two SM-states
ω(Nw) function describing how the weight of a node

scales its influence
φ(y) function describing the “familiarity” (local

density of nodes) of SM-state y

Table 2: Glossary of symbols and brief descriptions.

a scalar, N = 〈p,v, w〉, where p indicates the SM-state
associated with the node (referred to as the node’s “position”
in SM-space), v indicates a velocity of SM-change, and the
scalar, w indicates the “weight” of the node, a value that
partially determines the overall influence of the node. We
shall refer to these components using a subscript notation,
where the position, SM-velocity, and weight of node N are
written as Np and Nv and Nw, respectively.

As a robot controlled by the IDSM moves through SM-
states, new nodes are created recording the SM-velocities
experienced at different SM-states. Specifically, when a new
node is created, its “position,” Np is set to the current SM-
state; its “velocity,” Nv is set to the current rate of change in
each SM-dimension, and its weight, Nw is set to 0 (an initial
value that does not imply that the node is ineffectual, see
below). The two vector terms (Np and Nv) are calculated
in a normalized sensorimotor space, where the range of all
sensor and motor values are linearly scaled to lie, in each
dimension, between 0 and 1.

New nodes are only added when the density of nodes near
the current SM-state, as described by the function φ, is less
than a threshold value, φ(x) < kt = 1. This density func-
tion, φ, can be thought of as a measure of how many nodes
there are near to the SM-state x, and how heavily weighted
those nodes are. Loosely speaking, it is a measure of how
“familiar” the SM-state is, and it is calculated by summing
a non-linear function of the distance from every node to the
current SM-state, d(Np,x), scaled by a sigmoidal function
of the node’s weight, ω(Nw), as described in Equations 5–7.

φ(x) =
∑
N

ω(Nw) · d(Np,x) (5)

ω(Nw) =
2

1 + exp(−kωNw)
; kω = 0.025 (6)

d(Np, x) =
2

1 + exp(kd||Np − x||2)
; kd = 1000 (7)

After a node is created, its weight changes according to
equation 8, where the first term represents a steady degrada-



Figure 2: The influence of a single node, with Np =
(0.5, 0.5), Nv = (0, 0.1), and Nw = 0. In this didactic
scenario, Nv only has a non-zero component in the motor-2
dimension, and thus the node’s “velocity” influence causes
motor-2 to increase, and its “attraction” influence causes
motor-1 to approach a state of 0.5.

tion of the node’s influence, and the second term represents
a strengthening of the node that occurs when the current
SM-state is close to the node’s position. This latter term al-
lows for the self-reinforcement/self-maintenance of patterns
of behavior, such that patterns of behavior that are repeated
are more likely to persist than those that are not reinforced.

dNw
dt

= −1.0 + r(N,x) (8)

r(N,x) = kd(Np,x) (9)

A short period of time after creation (10 simulated time-
units), nodes are activated, meaning that they are added to
the pool of nodes that influence the motor state. Every ac-
tivated node influences the motor state, but at any one time
only a subset of these will have a substantial influence, for
the influence of a node is scaled non-linearly by its distance
from the current SM-state by the same distance function
used in φ above (Equation 7). The influence of each node
is also scaled by its weight according to Equation 6, and
thus nodes that are close to the current SM-state and nodes
with higher weights have a greater influence.

The influence of a node can be broken down into two fac-
tors: a “velocity” factor and an “attraction” factor. The ve-
locity factor is simply the motor components of the Nv vec-
tor, but the attraction factor, is slightly more complicated.
It is a sensorimotor-“force” that draws the system towards
the node. This tends to result in a motion in SM-space to-
wards regions of SM-space that are familiar, i.e. for which
there is a higher density of nodes and it can compensate for
stochasticity in the environment or perturbations to behav-
ior (see Egbert and Barandiaran, 2014 for details). The at-
traction vector has its component parallel to Nv removed to
prevent it from interfering with the velocity influence of the

node (again, see Egbert and Barandiaran, 2014 for details).
Figure 2 provides a visualization of the influence of a sin-
gle node in a hypothetical 2-motor, 0-sensor IDSM. In this
example, Nv is exactly vertical, so all horizontal motion is
due to the attraction component, and vertical motion is due
to the velocity component.

Equations 10 – 11 describe how the IDSM influences the
motor state. The velocity and attraction influences of every
node are scaled by the node’s weight and distance to the SM-
state, and then these are all summed before being scaled by
the density of the nodes at the current SM-state such that the
influence of all the nodes is averaged and not cumulative.
Obviously, the IDSM only has direct control of its motors
and the sensor-components of the SM-state are determined
by the systems interaction with its environment. Accord-
ingly, the superscripted-µ notation in the equations below
indicates where we are only using the motor-components of
the indicated vector terms.

dµ

dt
=

1

φ(x)

∑
N

ω(Nw)·d(Np,x)·(Nv︸︷︷︸
Vel.

+A(Np − x, Nv)︸ ︷︷ ︸
Attraction

)µ

(10)

A(a, Nv) = a− a ·
Nv
||Nv||

(11)

Experiment and Control Scenarios We compare two
scenarios. In the experimental scenario, the SM-space of
the IDSM has two motor dimensions: (the left and right
motor of the robot) and three sensory dimensions: its two
directional light-sensors, and a direct sensory perception of
its essential variable, G (scaled linearly such that the range
G ∈ [50, 130] lies in normalized sensorimotor coordinates
in [0, 1]). In the control scenario, everything is the same ex-
cept that the IDSM is not sensitive to G. To keep the total
number of SM-dimensions the same in both scenarios, the
sensitivity to G was replaced with a motor that has no effect
whatsoever. The control is included primarily to show that
the task is not trivially solved.

We simulated 25 trials of each scenario. At the start of
each trial, we randomly initialized the IDSM with 10000
nodes. These were generated by performing 200 random
walks in the 5 dimensional SM-space, each starting from
a random location within the SM-space with subsequent
loci calculated according to the following equation, li+1 =
li + r, where the components of r are selected from a flat
distribution [−0.05, 0.05] and where any components that
would take li out of the normalized SM-volume are inverted.
Nodes were added at each locus of the walk li with Np set
to li, Nv set to li+1 − li, and Nw = 0. We then placed
the robot at a random initial location within the arena, with
the essential variable initialized to a value at the center of
its viability region (G = 90) and the concentration of the
regulatory hormones I and U set to 0. We then allowed



Figure 3: Essential variable and spatial trajectories of the five best performing control and experimental agents. The square
plots indicate the spatial trajectories taken by each agent during the final 625 time-units of its simulation (the period during
which damage was evaluated). In these plots, the filled-circle indicates the feeding-region. Above each spatial plot, the essential
variable, G is plotted against time, with the viability-limits indicated by red-dashed lines and the period corresponding to the
spatial plot indicated by a darker line.

the IDSM to control the robot and tracked the position of
the robot and the trajectories of G, I, and U for 2500 sim-
ulated time units, so that we could evaluate the behavior of
the robot, and the extent of its success at maintaining the
essential variable within viability limits.

Results
To evaluate the performance of each trial, we measured the
amount of damage accumulated during the final 625 time-
units of each simulation. Figure 3 shows the spatial trajecto-
ries and the glucose concentration trajectory plotted against
time for the top 5 performing experimental and control tri-
als. We can see that by the end of the simulation, all five
of the plotted experimental trials have behavior that main-
tains G within these limits (although the trajectory in Trial
B appears to be on an amplitude-increasing cycle that may
eventually leave the viability limits). In comparison, none
of the control trials appear to have stabilized G within the
viability limits. Three of the experimental agents manage to
avoid incurring any damage during this period, and none of
the control agents are as successful. A variety of spatial tra-
jectories can be observed, both in the spatial dynamics and

in the dynamics ofG. Figure 4 shows the accumulated dam-
age for each trial during this last quarter of the simulation. A
Mann-Whitney-Wilcoxon test of these values indicates that
the experimental agents are better at maintaining the essen-
tial variable within limits to a statistically significant degree
(z = −3.13, p < 0.002).

Discussion
The IDSM supports the formation of self-maintaining pat-
terns of behavior by (1) assembling a collection of “nodes”
that track the SM-state-velocity for different SM-states, (2)
using these nodes to drive later behavior, and (3) hav-
ing these nodes, which perpetually degrade, depend upon
a mechanism of self-reinforcement to persist. The self-
reinforcement of a node is accomplished by the re-visitation
of SM-states near to the node’s “position” (Np), and so
only patterns of behavior that repeatedly visit SM-states can
persist. Therefore, in the experimental scenario where the
IDSM is sensitive to the essential variable, G, the only pat-
terns of behavior that will persist will be those where values
of G are regularly revisited in a way that correlates with the
other sensorimotor state variables. In several of the experi-



Figure 4: Final accumulated damage for each of 25 experi-
mental and 25 control trials. A higher bar indicates greater
damage incurred, i. e. worse performance.

mental trials, the stable pattern that emerged was one where
G was within the viability limits. Why? One possible expla-
nation is that the dynamics of G are more reliable within the
viable region than near or outside of it. WhenG has been in-
side the viable region for the system’s recent history, U = 0
and I = 0, and thus G changes at a constant rate determined
by E. In contrast, when G has recently left the viability
limits, one of the hormones will increase in concentration
and the way that G changes becomes less correlated with
the other sensorimotor variables, (especially given the delay
in the differential equations). Thus it seems more likely for
the system to find a repeating sensorimotor pattern when it
is within the viable region.

For Ashby’s homeostat and the robot controllers that it
inspired, the stability of the controller has been related to
the notion of an ecological invariant; a relationship with the
environment that is maintained by the behavior and that the
behavior depends upon. By including the state of G as an
interoceptive sensory input, the dynamics of G become part
of the habit’s sensorimotor “environment” (Buhrmann et al.,
2013), such that a behavior must cause G to change in a
repetitive way if it is to persist. G is the biological essential
variable, but once it is added as a sensory-variable to the
IDSM, its dynamics are also essential to the persistence of
the habit. The mental and biological autonomous structures
are thus intertwined in the sense that they share an essential
variable.

Perhaps ecological invariant is a bit of a misnomer in this
model, as it is not the fixed state of G or any other vari-
able that determines the stability of a pattern of behavior,
but more the reliability of a repeated dynamic. In both the
control and experimental agents, the behaviors displayed to-
wards the end of the trials are cyclical. This is due largely
to the dynamics of the IDSM, where again, only patterns

of SM-activity that repeat are reinforced, and as discussed
above, only reliable interaction with the environment can
result in repeated patterns of SM-activity. At times, the in-
ternal dynamics and the environmental interaction are “dis-
cordant”, in the sense that the motor activity driven by the
IDSM does not result in reliable sensory input and the in-
ternal dynamics do not “resonate” with the environment in a
self-stabilizing manner. As an example of this, consider the
more chaotic behavior in Trial E of Figure 3, where the agent
is moving around the whole arena, irregularly encountering
the feeding area. These irregular sensorimotor trajectories
are inherently less stable than those that cause a repeated
pattern of sensorimotor state, such as those demonstrated by
the subsequent, radially-symmetrical patterns in Trial E, and
most of the other agents depicted in Figure 3 (perhaps most
apparent in trials A, H, I and J).

In previous attempts to couple biological essential vari-
ables to self-maintaining behavior-generating mechanisms,
it has been argued that it is necessary to have two nested
closed-loops; the first loop being a behavioral coupling be-
tween the environment and the organism and the second
being an evaluation of the first via an essential variable,
such that when the biological essential variable goes out of
bounds, the behavior-generating mechanism is reorganized
(Di Paolo, 2003). The IDSM-based habits in the experi-
mental scenario are indeed dependent upon the maintenance
of a biological essential variable, but we would argue that
the two-nested-feedback loop description is not the best way
to describe the homeostatic adaptation demonstrated in our
model, in that the relationship between the operating lim-
its of the habits and the operating limits of the simulated
metabolism are more integrated here than in previous mod-
els. The habit does not depend upon the behavior because
of a prescribed threshold and response; i. e. it is not due to
a random reorganization of the system that is brought about
by a pre-specified essential variable going outside of some
pre-specified viability limits. Instead, the stability of the
behavior and its behavior-generating mechanism is directly
dependent upon the repetition of a particular trajectory of
the sensorimotor variables, including G. We propose that
in this paper we see an example of homeostatic adaptation
that blends these two feedback loops into one, suggesting
that having two nested feedback loops may not always be
necessary.

The system does not always find stability within the vi-
able region, and indeed in several cases (about half) the
experimental agents fare no better than the control agents.
In these cases, habits have still emerged, but they are un-
healthy habits in the sense that they do not maintain the bi-
ological essential variable within limits. In ongoing work,
and as part of the ALIZ-E project, we are working with
our colleagues to develop “diabetic robots” with a simulated
glucose/insulin/glucagon metabolism, that diabetic children
can interact with in different ways to investigate how inter-



action, or modification of the environment could modulate
unhealthy habits into healthy habits. By helping the robot
transform unhealthy habits into healthy habits, the diabetic
children will develop greater self-efficacy, self-confidence
and self-esteem, enabling them to better manage their dis-
ease (Lewis and Cañamero, 2014). We believe that models
such as that presented here can provide insight and fresh per-
spectives into the relationship between habits and health and
how such habits can be better managed.

Conclusion
We have presented our most recent exploration with the
IDSM, demonstrating how it can regulate behavior to sta-
bilize essential variables within limits simply by having the
state of the essential variable included among its sensors.
When habits emerge in this configuration, the habit itself
depends upon the dynamics of the biological essential vari-
able, and in this way have demonstrated the possibility of
more tightly integrated biological and mental autonomous
structures.
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